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INFLUENCE OF PROGRAMING TECHNIQUES AND OF VARYING LIMIT 

LOAD FACTORS ON MANEUVER LOAD FATIGUE TEST RESULTS* 

By Patr ick L. Corbin and Eugene C . Naumann 
Langley Research Center 

I 
i I 

Variable-amplitude axial-load fat igue t e s t s  were conducted on 

s t r e s s  concentration fac tor  of 4. 

Life f o r  variable-amplitude tests was found t o  increase a s  much as  60 percent 

7075-T6 aluminum-alloy edge-notched specimens having a theore t ica l  e l a s t i c  

mate maneuver load spectra. Fatigue l i f e  was found t o  be shorter fo r  random 

est change i n  l i f e  occurred when the t e s t  program contained negative loads. 

above the  or ig ina l  test l i f e  a f t e r  preloading with a program having a higher 
l i m i t  load factor .  The summations of cycle r a t io s  were approximately 2 f o r  
tests without negative loads but were approximately 1 f o r  t e s t s  with negativ 

The load programs were designed t o  approxi- 

form tests than f o r  block form tests havingthe same load spectrum. The 

loads. 

INTRODUCTION 

I n  recent years, the demand f o r  increased performance of a i r c r a f t  has 
accentuated t h e  problem of fa t igue f a i l u r e .  Fai lures  i n  both commercial and 
mil i tary a i r c r a f t  have necessitated cos t ly  programs of inspection and mainte- 
nance. 
dents, a i r c r a f t  companies have r e s o r t e d t o  programed fat igue t e s t s  of s t ruc tu ra l  
components which a re  designed t o  simulate service conditions f o r  the par t icu lar  
vehicle and component i n  question. Such tes t ing  i s  required primarily because 
there  i s  no adequate theory f o r  predict ing fatigue l i f e  under variable-amplitude 
loading conditions. 

I n  an attempt t o  reduce maintenance costs and the probabili ty of acci-  

Two frequently used methods of programing a variable-amplitude fat igue 
test a r e  the block form program i n  which loads occur i n  small groups having 
iden t i ca l  amplitudes within each group and the random form t e s t  i n  which indi-  
vidual load cycles occur i n  random sequence. 

* The information presented herein w a s  offered a s  a thes i s ,  e n t i t l e d  "The 
Influence of Testing Techniques and of Varying L i m i t  Load Factors on Maneuver 
Load Fatigue Test Results" by P. L. Corbin, i n  p a r t i a l  fulf i l lment  of the 
requirements f o r  t he  degree of Master of Science i n  Engineering Mechanics, 
Virginia Polytechnic I n s t i t u t e ,  Blacksburg, Virginia, October 1964. 



The difference i n  t e s t  r e su l t s  obtained by conducting a variable-amplit de Y fa t igue  t e s t  i n  random form ra ther  than i n  block form has been evaluated f o r  
a i r c r a f t  gust load h i s to r i e s  ( re f .  1). 
t h i s  e f fec t  for  a i r c r a f t  maneuver load h i s t o r i e s  i n  which almost a l l  stress 
cycles are excursions above a pos i t ive  1 g stress ra ther  than a mixture of 
cycles with posi t ive and negative excursions as occur i n  a gust load his tory.  

The present invest igat ion has examined 

Three maneuver load h i s t o r i e s  were programed i n  both block and random 
Thus, it w a s  possible t o  compare d i r ec t ly  the  r e s u l t s  of t es t s  with 

Another 
form. 
ident ica l  load s t a t i s t i c s  but d i f fe r ing  i n  method of application. 
s e r i e s  of tes ts  was conducted t o  evaluate the  e f f ec t  of placarding ( r e s t r i c t i n g  
top speed and maneuver sever i ty)  an airplane.  

The tests were conducted on sheet specimens of 7075-T6 aluminum a l loy .  
Some of the r e su l t s  w e r e  analyzed and compared on t h e  bas i s  of Miner's l i nea r  
cumulative damage theory; the  other r e s u l t s  were compared on the  bas i s  of t o t a l  
number of cycles.  

SYMBOLS 

The uni t s  used f o r  the  physical quant i t ies  defined i n  t h i s  paper are given 
i n  both the U . S .  Customary Units and the  In te rna t iona l  System of Units ( S I ) .  
Factors r e l a t ing  the  two systems a r e  given i n  reference 2. 

K t  

N 

n 

r 

S i  

%ax 

Smin 

slg 

7 

2 

theore t ica l  e l a s t i c  stress concentration f ac to r  

constant -amplitude fa t igue  l i f e ,  cycles 

number of cycles applied a t  a given s t r e s s  l e v e l  

notch radius, inches (centimeters) 

s t r e s s  a t  t e s t  l e v e l  

maximum cycl ic  stress, kips  per  square inch (meganewtons per  meter21 

minimum cycl ic  stress, kips  pe r  square inch (meganewtons per meter2) 

l eve l  f l i g h t  stress, k i n  for pos i t ive  loads and E&x f o r  negative 

i, kips per square inch (meganewtons per  meter2) 

load cycles, kips per  square inch (meganewtons per  meter21 

Maximum expected v e r t i c a l  accelerat ion 
Acceleration due t o  gravi ty  

service l i m i t  load f ac to r ,  



LOAD DETEfFJIINATIOlV AND APPLICATIOll 

Maneuver bad Statistics 

' Load factor 

The variable-amplitude 
fatigue tests were designed to 
approximate a maneuver load his- 
tory. The frequency distribu- 
tion of positive maneuver peak 
loads presented in reference 3 
was converted to a spectrum of 
stress plotted against cumula- 
tive frequency. 
(Slg)equal to 7 ksi (48.3 MN/m?) 
and a design lbit load factor 
of 7.3 were assumed for this con- 
version. One set of maneuver 
peak load statistics from refer- 
ence 3 is presented in table I. 
The converted data are presented 
graphically in figure 1. The 
lower curve in figure 1 is 
explained in a later section. 
This continuous load spectrum 
was reduced to eight discrete 
load levels using S-3 data f r o m  
constant-amplitude fatigue 
tests. The method used is 
described in reference 4 and 
the results obtained are pre- 
sented in table 11. 

A 1 g stress 

Rnnber exceeding 

Load Programing 

1.0 

The load statistics were 
programed in both block and 

10 ooo 

[kneuver loads, reference 31 
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Figure 1.- Maneuver load cumulat ive frequency statistics. 
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random form with the same cumulative frequency spectrum. 
described in the following paragraphs. 

These two methods are 

"he block method of programing resulted in a variable-amplitude test with 
the loads applied in groups of identical cycles. 
eight amplitudes was represented one time and all of the cycles at that ampli- 
tude were applied before proceeding to the next amplitude. 
the sequence of load levels was varied according to a schedule taken from a 
table of random numbers. 
the 20th block after which the schedule forthe first 20 blocks was repeated. 

Within each block each of 

Within each block 

A different sequence was used for each block until 

3 



TABLE I1 

VARIABLE-AMPLITUDE MAD PROGRAMS FOR 7075-T6 ALUMINUM-ALLOY 
SPECIMENS USING MANEWER MAD HISTORY 

Step 

g stress = 7 ks i  = 48.3 M N / 2 ]  

Representative 
stress . n/step n/N per step 

ksi m/m2 

1 
2 
3 
4 
5 
6 

8 
7 

9.8 67.6 1 030 0 
15.3 106 780 . 0001 

26.2 181 300 .0187 
31.7 219 180 .0252 
37.0 255 88 .0236 

48.8 337 11.5 .0091 

20.8 144 510 .0068 

42.3 292 35 .0164 

2 934.5 0 * 6'99 

7.8 
12.2 
16.6 
21.0 
25.4 
29.6 
33.8 
39.0 

9 
10 

54 
84 

115 
145 
175 
204 
233 
269 

~~~ 

Program l ( a )  plus 

53.4 368 3.2 0.0038 

2 938.4 0.1051 

58.6 404 .7 .0014 

1 030 
780 
510 
300 
180 
88 
35 
11.5 

-1 
-2 

2 934.5 

I 

Program l ( a )  plus 

-2.8 -19 - 3 15 0 
-9.8 67.6 1.5 0 

2 951 0 6'99 

0 
0 

0037 
.0038 

. a 9 2  

.0072 

.m37 

.0094 

0.0370 

The random method 
involved programing each l&d 
cycle independently. The 
sequence of cycles was deter- 
mined by generating random 
numbers and assigning codes 
t o  various s ized increments 
t o  shape the  overa l l  frequency 
d i s t r ibu t ion  t o  match t h a t  
from reference 3. The method 
of generating the  random num- 
bers and shaping the  frequency 
d i s t r ibu t ion  i s  given i n  
reference 1. 

TEST VARIATIONS 

Automatic and Semiautomatic 
Tests 

Since tes t  r e s u l t s  
obtained on automatic machines 
i n  the  present invest igat ion 
were t o  be compared with 
r e s u l t s  from t e s t s  conducted 
on semiautomatic machines, it 
was f i rs t  necessary t o  deter-  
mine whether machine e f f ec t s  
would inval idate  these com- 
parisons.  Therefore, t he  
f i rs t  tes t  series consisted 
of a block form maneuver load 
program, program I( a ) ,  con- 
ducted on both semiautomatic 
and filly automatic machines. 

Block and Random Programs 

The second s e r i e s  of 
tests was intended t o  deter-  

mine whether s ign i f icant ly  d i f fe ren t  r e s u l t s  would be obtained from t e s t s  having 
the  same load s t a t i s t i c s  but applied by d i f f e ren t  procedures. 
load programs were conducted i n  both block and random form: 

The following 

Program l ( a )  i s  shown i n  table I1 and was reported i n  reference 4 ( load 
schedule 1). 
pos i t ive ,  a minimum load of 1 g, and a maximum load of 7.3g (design l i m i t  load) .  

It was a block form maneuver load tes t  with a l l  stress cycles 

4 



Program l ( b )  was the  same a s  program l ( a )  except that two addi t ional  s t r e s s  
l&els were added above the  highest l eve l  of program l ( a ) .  

Program l ( c )  was the same as  program 1 ( a )  except t ha t  two negative stress 
leve ls  were added. 
stress levels .  

Therefore, this program had eight posi t ive and two negative 

Service Load L i m i t s  

Because of unforeseen design defects,  vehicles frequently a re  placarded 
a f t e r  r e l a t ive ly  short  service,  t h i s  usually means that the  maneuver severi ty  
and/or speed w i l l  be r e s t r i c t ed  t o  extend the fa t igue  l i f e .  This, i n  e f f ec t ,  
reduces the  service l i m i t  load fac tor  
f ind  i n  quant i ta t ive terms the e f f ec t  of reducing q i n  a maneuver load tes t  
program. 

q and it i s  therefore of i n t e r e s t  t o  

I n  reference 4, block form fat igue tests were reported f o r  q = 7.3 (pro- 
gram l ( a ) ) .  
mately 20 percent; t h i s  resul ted i n  a program with 
referred t o  a s  the 
The stress - cumulative frequency f o r  both programs i s  given i n  t ab le  I1 and i s  
shown i n  graphical form i n  figure 1. 

I n  program 2, the value of each s t r e s s  cycle was reduced approxi- 
This program is  

The two programs were otherwise ident ica l .  
q = 6. 

q = 6 program. 

Load programs 2 (a ) ,  2 (b) ,  and 2(c)  were conducted i n  block form with load 
fac tors  from program l ( a )  fo r  various percentages of the expected l i f e  a t  
9 = 7.3 
t ab le  shows the  incremental n l u e s  of program l ( a )  used: 

and then completed with load factors  from program 2. The following 

Program 
Percent of expected 

l i f e  a t  q = 7.3 
(program u a  1 1 

Percent of expected 
l i f e  a t  q = 6 

(program 2 )  

--------- 
100 

Remainder 
Remainder 
Remainder 

The preceding t e s t  schedules were designed t o  evaluate t h e  influence on 
fa t igue l i f e  of reducing the service l i m i t  load fac tor .  Frequently, t he  con- 
verse s i t ua t ion  a r i s e s ;  t h a t  i s ,  mission requirements cause the service l imi t  
load fac tor  t o  be increased. In order t o  evaluate the  e f f ec t  of t h i s  type of 
change, load program 2( d) was developed. I n  program 2( d) , loads were applied 
according t o  program 2 u n t i l  approximately 50 percent of the expected l i f e  a t  
q = 6 
f o r  the  remainder of t he  tes t .  

had elapsed,then the  loads were increased t o  the values fo r  program l ( a )  

5 



TESTING MACHINES 

A block diagram of the  machine used i n  t h i s  invest igat ion i s  shown i n  f i g -  
ure 2. 
a x i a l  load and the  system i s  capable of cycling rates up t o  7 cycles per sec- 
ond (7  Hz) depending on the  load range. 
load controls i s  selected i n  an a r b i t r a r y  sequence by a logic  system which 
receives i ts  si@;nal from punched cards. Use of t h i s  electrohydraulic system 
allows the programing of any load h is tory  t h a t  can be represented by 55 or 
fewer discrete  load leve ls .  

The machine has a nominal capacity of k10 000 pounds (k44.5 W )  i n  

A n y  one of 55 individual ly  adjustable  

I n  operation, the  card reader transmits coded load information t o  a logic  
system. The logic  system performs a s e r i e s  of funct ional  checks and then 
switches the  correct preset  load control  potentiometer i n t o  t h e  sensing c i r c u i t .  
The voltage from t h e  load control  i s  combined with t h e  output from a s t r a i n -  
gage bridge attached t o  a weighbar which i s  i n  se r i e s  with t h e  specimen. The 
resu l tan t  voltage (magnitude and po la r i ty )  i s  used t o  d i r ec t  a servo valve. 
True load accuracy i s  estimated t o  be k0.3 percent of f u l l  scale ,  or k 3 O  pounds 
(13.35 N ) .  This system i s  explained i n  d e t a i l  i n  reference 1. 

SPECIMENS 

The tes t  specimens were made of 7075-T6 aluminum-alloy sheet,  0.090 inch 
(2.3 mm) thick.  The specimen Configuration i s  shown i n  f igure  3 and consisted 
of edge notches with a theo re t i ca l  e l a s t i c  stress concentration f ac to r  of 4.0. 
The specimen fabricat ion procedures a re  
given i n  the  appendix. The mater ia l  
properties (from ref.  5) a re  given i n  
t ab le  111. 

SERVO LOOP 

Figure 2.- Block diagram of programed variable-amplitude fatigue test ing machine. 

17.500in. t 

8 750 in I ( 2 2 . 2 c m  I 
.O 750in.  
( I  9 cm) 

r=O.O58in (015  c m )  

I 5 0 0 i n .  
(3.81 cm) 

- 2 2 5 0 i n .  

( 5  7 2  cm) 

Figure 3.- Specimen configuration w i th  edge 
notches made of 0.090-inch-thick (2.3 m m )  
7075-T6 aluminum-al loy sheet. Kt = 4.0. 
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P 

U l t i m t e  t e n s i l e  
strength 

k s i  

TABLE I11 

TENSILE MECHANICAL PROPERTIES OF TOT>-% AulMTNuM ALLOY 

F52 t e s t s ;  data from reference 5 1 
Yield s t rength Total 

(offset 0.2 percent )  elongation 

ksi I wa percent 
. i n  2 i n .  ( 5  cm), 

Average . . . 82.94 572 75 * 50 521 32.3 
79.84 71.54 7.0 

Maximum. * . . . 1 84.54 1 52,” 1 79-79 1 1 15.0 

RESULTS 

Test Data 

The results of the variable-amplitude fatigue t e s t s  a re  presented i n  
table N and i n  figures 4 and 5. 
es tab l i sh  whether the  var ia t ions investigated have an e f f ec t  on fat igue l i fe .  
For completeness, table IV contains the  load s tep  a t  failure and the specimen 
l i f e  ( t o t a l  cycles) i n  addition t o  l i f e  indices computed by Miner’s l i nea r  
cumulative damage theory. 
excessive and i s  indicated by the t i c k s  on the symbols i n  figures 4 and 5.  

Data taken from reference 4 have been used t o  

The sca t t e r  i n  the t e s t  r e s u l t s  is  not considered 

Autmatic  and Seloiautomatic Tests 

A comparison of r e su l t s  from program l ( a )  , semiautomatic block and auto- 
matic block, showed no s igni f icant  difference ( t ab le  IV); therefore,  it was 
concluded t h a t  any e f f ec t s  due t o  machine differences, load accuracy, speed 
differences,  and so for th ,  were negligible.  

Block and Random Tests 

The r e s u l t s  of the three sets of t e s t s  i n  the  block and random series a re  
shown i n  figure 4. The random test l i v e s  were invariably shorter  than t h e  
block test l i v e s  but t h i s  e f f ec t  was most pronounced f o r  the program which 
contained negative loads. 
w e r e  about 40 percent shorter than the  block test l ives .  
e f f ec t  of negative loads was a l so  noted f o r  gust load tests i n  reference 1. 
Figure 4 a l so  indicates  t h a t  including negative loads i n  the t e s t  program has 
reduced specimen l i f e  by a fac tor  of approximately 2 as compared with the  same 
program without negative loads. This substantiates the  findings of several  
investigations of t h i s  par t icu lar  e f fec t .  

The random t e s t  l i ves  f o r  t h i s  par t icu lar  program 
This perturbing 

(See, f o r  example, r e f .  1.) 

7 



TABLE IV 

VARIABLE-AMPLITLIDE TEST RESULTS MANEWER LOAD SPECTRUM 

2.43 
2.35 

2.08 
2.06 

1.98 
1.88 

2.17 

2.04 

2.08 

191 054 
184 430 

162 804 
161904 

156 295 
147 705 

171 1-17 

160 191 

-- 
163 200 

Geometric mean'. . . . . . . . . . .  1.95 54 260 
~ 

~~~ ~~~ 

B84N2-3 
B85N2-7 

B85N2-9 
B85N2-5 
B84N2-3 

~105~1-2 

B84N2 -6 

2.28 
1.74 
1.62 
1.44 
1.44 
1.44 
1.21 
1.47 

60 666 
46 300 
42 997 
38 221 
38 221 
38 221 
32 174 
42 200 

-- 

- , 1.88 

Bl9N2-2 
B19N2-3 

1.79 
1.70 
2.03 

102 741 
100 347 -- 
109 500 

Specimen I Load s tep  a t  f a i l u r e  I n/N I Cycles Specimen I Load s tep  a t  f a i lu re1  n/N I Cycles 

Program l ( c ) ;  block 

8 
B104N1-2 8 
B10 4N1- 10 8 
B96N1-3 8 
B104N1-6 8 
B97N1-7 7 
Geometric mean . . . . . . . . . . .  

Program l ( a ) ;  block; semiautomatis 

B52N1-4 
B95N1-2 

B50N1-9 
~ 5 ~ 1 - 2  

~56~1-1 

Geometric mean . . . . . . . . . . .  

r l '  

2.34 

2.04 

1.85 

- 

2.23 

1.91 

1.85 
2.02 
- 

.3 

69 911 
64 694 
59 815 
55 766 
54 083 
54 083 
59 440 

Program 2; block; n = 6 Program l ( a ) ;  random; automatic 

8 
8 
8 
8 

2.32 
2.17 
1.91 
1.89 
1.78 
1.69 - 

B2ON2-10 
B2N2-2 
m2-1 
6N2-10 
~2~2-9 
BbN2-2 
B4N2-5 
Bl9N2-9 
Geometric mean 

64 653 
64 413 
53 228 
52 672 
49 578 
47 065 

Bll2N2-1 
B84N2-1 
~112~2-3 
B105N1-7 

B84N2 -7 
B84N2-4 8 

8 

. . . . . . . . . . .  
I I 

Program 2(a) (25 percent program l ( a )  p lus  program 2 

W2-3 
~ 2 ~ 2 - 7  

~ 7 ~ 2 - 1  
~2~2-8 

B3N2-2 

6N2-4 
Geometric mean 

7 
8 
8 
8 
8 
8 

. . . . . . . . . . .  

3.61 
3.52 

3.22 
3.06 

3.22 

3.23 

2.77 - 

285 454 
251 ooo 
228 760 
227 606 
215 564 
192 131 
227 599 ?rogram l(b) (program l ( a )  + 2 l eve l s  > NR); random 

10 
10 
10 
10 
10 
10 
10 

'rogram 2(b)  (50 percent program l ( a )  p lus  program 2) 

~10~2-7 

~ 3 ~ 2 - 7  
B7N2-5 

6N2-5 

B6N2-9 
BjN2-9 

Geometric mean 

8 
8 
5 
8 
7 
6 

. . . . . . . . .  

3.54 
3.36 
3.34 
2.74 
2.66 
2.57 
3.01 
- 

228 124 
214 201 
211 978 
164 878 
158 152 592 298 

185 900 
. . . . .  

I I 

Program l ( b ) ;  block* 
?rogram 2(c) (75 percent program l ( a )  p lus  program 2) 

2.80 
2.19 
2.19 
2.00 
1.67 
1.67 
1.67 

B49N1-5 
BgON1-2 
~96~1-1 
~90~1-1 
~90~1-5 
~ 9 ~ 1 - 6  
B94N1-2 
Geometric mear 

10 
10 
10 
10 
10 
10 
10 

. . . . . . . . . . .  

79 069 
60 5% 
60,586 
54 797 
46 978 
46 978 
46 978 
55 800 

3.38 

2.31 
2.17 
2.16 
2.61 

5-13 
2.74 

- 
- 

191 360 
168 979 
140 207 
105 557 
95 579 
94,148 
127 600 Geometric mean I. . . . . . . . . . .  

Program ~ ( c )  (program 1 ( a )  + 2 l eve l s  < 0 ) ;  random ?rogram 2( d) (50 percent program 1( a )  p lus  program 2) 

B15N2-1 

B105N1-9 
~ 8 5 ~ 2  -3 
~85~2-1 

B85~2-8 
B105N-8 

B105N1-4 

0.85 
.78 
.75 
.75 
.74 
.63 

0.75 
- 

23 412 
21 159 
20 880 
20 706 
20 357 
17 393 

8 
8 

1 
Geometric mean . . . . . . . . . . .  

-. ~ - 
20 570 . . . . .  

*Reference 4. 
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1; 

Program I ( a )  

P r o g r a m  I (b1  

P r o g r a m  I(c) 

Moneuver r  

Positive only 

Posit ive + 2 > S e  

P o s i t i v e + 2  Sl<O 

Block form test  
0 Rondom form tes t  

ca 

u u  
.5 I 5 

c+ 

Figure 4.- Results of variable-amplitude fatigue tests showing effects of IMd 
randomization. Maneuver load spectrum; 7075-T6 aluminum alloy; 
l g  stress = 7 ksi (48.3 MN/m2), 

Percent  of expected  l i f e  ot: 

P r o g r a m  r\ -7.3 r\ = 6 . 0  

- I(o1 io0  

1 0 0  - 2 

2to) 25  Remainder 

2(b)  5 0  Remainder 

2(c) 7 5  R e m a i n d e r  

2 ( d )  Remainder  5 0  

T e s t s  With Varylng Service Limi t  
Load Factor 

A s  shown i n  figure 5, the  
number of simulated f l i g h t s  the 
specimens survived first 
increased and then decreased a s  
the  p r io r  his tory loading under 
the more severe program increased 
from 0 t o  75 percent of the spec- 
imen’s average l i fe .  For the  
pa r t i cu la r  combination of load 
fac tors  and p r io r  h i s to r i e s  used, 
the  l i f e ,  i n  simulated f l i g h t s ,  
was a maxirmun a t  t he  25-percent 
point,  and the  l i f e  under t h i s  
combination was approximately 
33 percent longer than the l i fe  
under the  less severe program by 
i t s e l f .  

I 

I 

0.7 1.0 1.5 2.0 3.0 4 . O X I O 3  

S i m u l a t e d  f Ii ght  s 

Figure 5.- Variable 0 test results. Maneuver load spectrum; 7075-T6 aluminum alloy. 

Data Analysis 

The r e s u l t s  of the  tests dealing with block and random programs were ana- 
lyzed by Miner’s theory. This theory i s  widely known and provides a convenient 
standard f o r  comparison of fa t igue tes t  resul ts .  
changing load limits, however, were analyzed on the bas i s  of the  number of s i m -  
u la ted f l i g h t s  t he  specimen survived. The number of simulated f l i g h t s  i s  equal 
t o  the  number of cycles survived divided by 68, since from reference 3 the  
average number of cycles per f l i g h t  was 68. 

“he t e s t s  concerned with 

A s  an a i d  i n  judging whether an e f f ec t  was present, the data were compared 
s t a t i s t i c a l l y  with reference 6 a s  a guide. In order t o  make the s t a t i s t i c a l  
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analysis,  the  d is t r ibu t ion  of t es t  r e s u l t s  was assumed t o  be log normal and a 
95-percent confidence l e v e l  w a s  used. The standard deviations of t he  logar i  

a r e  ( o r  are not) s ign i f icant ly  d i f f e ren t )  and the  means of t h e  logarithms of 
t es t  r e su l t s  were compared by the  "t" tes t  ( i . e . ,  sample means a r e  ( o r  a r e  not )  
s ignif icant ly  d i f f e ren t ) .  The r e s u l t s  of t h i s  s t a t i s t i c a l  analysis  are pre- 
sented i n  table V.  The values i n  t a b l e  V provide quant i ta t ive support f o r  the  
qua l i ta t ive  conclusions reached i n  the  preceding observations. 

s 
of t e s t  r e su l t s  were compared by t h e  "F" test  ( i . e . ,  sample standard deviat io  T s 

TABLE V 

RESULTS OF STATISTICAL ANALYSIS OF VARIABLE-AMPLITUDE FATIGUE TESTS 

[kmeuver load spectrum; 7 0 7 5 - T 6  aluminum-alloy 
specimens; 1 g stress = 7 ks i  (48.3 MN/m21 
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TABLE V.- Concluded 

RESULTS OF STATISTICAL ANALYSIS OF VARIA2JE-AMPIlTLmE FATIGUE TESTS 

[hneuver load spectrum; 7075-T6 aluminum-alloy 
specimens; 1 g stress = 7 h i  (48.3 ~ / m 2 i  
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Yes Yes Yes 'rogram l(a), block q = 7.3 

'rogram 2 7 = 6 \ Yes Yes 

'rogram 2(a) 
(25 percent prog. l(a) + 2 ,  

5-82 L.39 \ NO 5 
0.69 

1.5L 

- 

'rogram 2(b) 
(50 percent prog. l(a) + 2' 

L.14 
- 
3.78 

i.36 
- 

0.82 

- 
0.56 
- 
1.89 

'rogram 2( c )  
(75 percent prog. l(a) + 2 

'rogram 2 ( d )  
(50 percent prog. 2 + l(a) 

Yes ---Sample simulated flights geometric means are 
significantly different. 

I t i o  si-ted flights geometric means, 
Top group 
Side group 

DISCUSSION OF €ESULTS 

Damage and Failure Considerations 

Trends i n  fa t igue l i f e  observed i n  t h e  present tes ts  are explained quali-  
t a t i v e l y  on the  bas i s  of res idual  stress and residual  s t a t i c  strength 
considerations. 
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Residual s t resses . -  Residual stresses a r e  obtained whenever a l o c a l  stress, 
such a s  a t  the root of a notch, has exceeded the e l a s t i c  l i m i t  of t he  materidq-. 
The p l a s t i ca l ly  deformed mater ia l  m u s t  be s t ressed  t o  re turn  t o  i t s  o r ig ina l  
shape, and the  necessary force i s  provided by the  adjacent e l a s t i c a l l y  s t ra ined  
material. Residual s t r e s ses  cannot be computed accurately or determined by non- 
destructive tes t ing ;  however, t h e i r  e f f e c t s  can be determined through experi- 
mental methods and used t o  advantage. 

Compressive residual  stresses delay fat igue crack i n i t i a t i o n  and propaga- 
t i on ,  whereas t e n s i l e  res idua l  stresses have an adverse e f f ec t .  The benef ic ia l  
e f f ec t s  of compressive residual  s t r e s ses  w i l l  decay under repeated cycling, t h e  
rate of decay being determined by the  r e l a t i v e  magnitude of the  highest  load 
l e v e l  and successive load leve ls .  

Residual s t a t i c  strength.-  Fai lure  of t he  specimen occurs when the  applied 
load equals the residual  s t a t i c  s t rength of t h e  specimen. The res idua l  s t a t i c  
strength of a specimen f i r s t  decreases sometimes precipi tously as a crack i s  
i n i t i a t e d  and then de ter iora tes  fur ther  with increasing crack length.  
r e f .  7 . )  
i f  any, e f f ec t  on the  res idua l  s t a t i c  s t rength.  High loads which may produce 
residual  s t r e s ses  tha t  increase fat igue l i f e  by retarding crack i n i t i a t i o n  and 
propagation may a l s o  cause ear ly  f a i l u r e  of a specimen containing a short  
fa t igue crack i f  t he  load exceeds the  res idua l  s t a t i c  strength of t he  specimen. 
Table I V  indicates  t h a t  almost every specimen f a i l e d  on the  highest  load i n  the 
program, which substant ia tes  t he  above argument. 

(See 
I n  engineering materials,  res idua l  s t r e s ses  probably have very l i t t l e ,  

Block and Random Tests 

In  t h e  block and random test  s e r i e s ,  program l ( c )  showed the  l a rges t  var i -  
a t ion  i n  l i f e ;  t h i s  indicates  t h a t  t h e  presence of negative load cycles i s  one 
of t h e  most disrupt ive fac tors  i n  comparisons of block and random tests.  This 
variation w a s  probably due t o  the  f a c t  t h a t  i n  t h e  block form tes t ,  the  negative 
loads,which reduce benef ic ia l  res idual  s t resses ,occurred i n  groups a t  widely 
spaced in te rva ls  and i n  t h i s  form had l i t t l e  more e f f ec t  than would s ingle  neg- 
a t i v e  loads a t  l i k e  in te rva ls .  The same number of negative loads occurred i n  
the  random t e s t ,  but i n  t h i s  case they were d is t r ibu ted  throughout t he  tes t  
program and therefore ,  i n  e f f ec t ,  occurred a t  a much higher frequency. This 
multiplied t h e i r  res idual  stress destroying capabi l i ty  and a correspondingly 
shorter  l i f e  was obtained f o r  t he  random t e s t .  

For t es t  programs l ( a )  and l ( b )  t he  differences between l i v e s  of random 
and block tes ts  were small. These differences were probably due t o  the  f a c t  
t h a t  the random programs introduced more high load cycles i n  the  in t e rva l  of 
program used than was t h e  case f o r  t h e  block t e s t s .  The random t e s t  schedules 
were programed t o  have the  same s t a t i s t i c s  a s  the  block t e s t s  f o r  t he  t o t a l  
load  history; however, the tes t  l i f e  ac tua l ly  involved only a small i n t e rva l  of 
the  complete his tory and the  above s i tua t ion  was found t o  be t rue  i n  the  i n t e r -  
va l  used. 

It w a s  noted tha t  summation of cycle r a t i o s  were approximately 2 f o r  t h e  
t e s t s  with a l l  pos i t ive  load fac tors ,  but were close t o  1 f o r  the tes ts  
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containing negative loads. 
pumished i n  reference 4. 

These r e su l t s  are consistent Kith the r e su l t s  

Varying Service L i m i t  Load Factor Tests 

In t e s t  programs 2(a) ,  2(b) ,  and 2(c)  t h e  l i v e s  were considerably longer 
than would be expected from l inear  damage accumulation theories.  
i n  life may be explained on the basis  of res idual  s t resses;  that is, the high 
residual  stresses introduced by the  large amplitude loads of t he  
delayed crack i n i t i a t i o n  and/or growth a t  the subsequent lower s t resses  of t h e  
q = 6 level .  

This increase 

q = 7.3 l eve l  

For program 2(d) ,  i n  which the  low s t ress  leve ls  preceded the high s t r e s s  
leve ls ,  the  t o t a l  l i f e  was approximately the sum of one-half the l i f e  a t  
q = 6 and one-half the l i f e  a t  q = 7.3 
of l i nea r  damage theories .  
the other t e s t s  i n  which the  high s t resses  preceded the low s t r e s s  leve ls .  

which would be expected on the bas i s  
A s  noted, however, t h i s  concept does not hold f o r  

CONCLUDING REMARKS 

Variable-amplitude axial-load fat igue t e s t s  of 7075-T6 aluminum-alloy 
sheet specimens were conducted according t o  loading schedules designed t o  
approximate maneuver load h i s to r i e s .  
following observations: 

The resu l t s  of these t e s t s  support the  

Maneuver load fat igue l i v e s  were shorter for random form t e s t s  than fo r  
block-form t e s t s  having t h e  same load spectrum. 
when the  loads were applied i n  random sequence and negative loads were included. 

The shortest  l i f e  occurred 

Negative loads i n  a t e s t  program reduced fat igue l i ves  by a factor  of 2 as 
compared with the  same t e s t  without negative loads. 
t i on  of cycle r a t i o s  was found t o  be approxixrately 1 and 2, respectively. 

The corresponding summa- 

Fatigue l i v e s  up t o  60 percent above the or ig ina l  test l i f e  were obtained 
by preloading with a portion of a t e s t  program having a higher l i m i t  load 
factor .  

. 

A l l  of t he  trends noted herein may be explained qua l i ta t ive ly  with the  
a i d  of res idual  s t r e s s  and residual  s t a t i c  strength considerations. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va., August 5 ,  1965. 



APPENDIX 
\ 

Specimens 

The material  for specimens used i n  t h i s  investigation was  taken from p a r t  
of a stock of commercial grade 0.090-inch-thick ( 2 . 3  mm) sheets of 7075-T6 alu- 
minum al loy retained a t  the Langley Research Center f o r  fatigue tes t  purposes. 
The material properties are given i n  t a b l e  111. 
given i n  f igure 2 of reference 8. 

The material  blank layout i s  

Each specimen w a s  stamped with a number ident i fying the specimen as t o  
material, sheet number, and location within t h e  sheet.  For example, specimen 
~115~1-7 i s  7075-T6 ( B ) ,  taken from sheet 115, blank N1, seventh posit ion.  

The specimen dimensions are shown i n  f igure 3. The specimen surface was 
l e f t  as received, and t h e  longitudinal edges were machined and notched t o  give 
a theoret ical  e l a s t i c  concentration f a c t o r  of 4.0. 
chosen because it has been found t o  have fat igue charac te r i s t ics  representative 
of a i r c r a f t  components ( ref .  9 ) .  
form the notch root and then s l o t t i n g  t o  t h e  specimen edge with a 3/32 inch 
(2.4 mm) mill ing too l .  
an undersize hole was d r i l l e d  f i rs t  and enlarged t o  the  proper radius by using 
progressively l a rge r  dri l ls .  
nesses and then replaced. The last  three d r i l l  increments were 0.003 inch 
(0.076 m) and a d r i l l  press with constant automatic feed w a s  used. 

This configuration w a s  

The notch w a s  formed by d r i l l i n g  a hole t o  

I n  order t o  minimize residual  s t r e s ses  due t o  machining, 

Drills were used t o  dri l l  four specimen thick- 

Burrs l e f t  on the  specimens by the  machining process were removed by 
holding the  specimen l i g h t l y  against  a ro ta t ing  composition dowel impregnated 
with a f ine  grinding compound. This procedure was used t o  keep the present 
tes ts  consistent with past  tests conducted a t  t he  Langley Research Center. All 
specimens were inspected with a f i v e  power magnifying glass,  and only those 
f r e e  of defects i n  and near the notches were used. 
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